

2. For the special case of zero obliquity(tilt), an exact nonlinear equations delimiting apodays in the space of orbital eccentricity and spin-orbit (day-year) ratio is derived, confirmed by numerical simulations.

Acknowledgement

This work is advised by Dr. Lindner and Dr. Kelvey.

Host Star Frame

equatorial observer

Construct planet frame $\{\widehat{R}_0, \widehat{R}_1, \widehat{\omega}_s\}$ $\widehat{R}_1 = \widehat{R}_0 \times \widehat{\omega}_s$

Recovery

Apoday: The host star appears to move backwards in the sky observed from planet.

Goal:

Exoplanets Sunsets

Ariel Xie

Conclusion

1. Using Mathematica simulations, we modeled apparent host star motion in exoplanet for different orbital eccentricity, spin-orbit ratio and obliquity...

Hypothesis:

Eccentricity Obliquity

Eccentricity $\equiv e$

Find the necessary condition for apoday to happen

Azimuth

teversa

3D 2D

Helix Plot

0° longitude

apodays unobserved

180° longitude

apodays observed

1. Set up differential equations using Kepler's La \equiv w so that given eand T_s/T_o we get the planet orbit model. Let Mathematica solve the initial value problem numerically.

2. Plot the orbit, altitude of the host star, and define a metric to determine apoday .

3. Make a grid of the plots.

Find Boundaries

 $\omega_s \equiv$ planet spin angular velocity

 $\omega_a \equiv$ planet orbital angular velocity at aphelion

$$\omega_a = \frac{2\pi}{T_0} \sqrt{\frac{1-e}{(1-e)^3}}$$

 $\omega_p \equiv$ planet orbital angular velocity at perihelion

$$\omega_p = \frac{2\pi}{T_0} \sqrt{\frac{1+e}{(1-e)^3}}$$

