Results:

 Sphere \equiv observer Blue \equiv apoday$$
\epsilon=\theta
$$

Construct planet frame $\left\{\hat{R}_{0}, \hat{R}_{1}, \widehat{\omega}_{s}\right\}$ $\widehat{R}_{1}=\widehat{R}_{0} \times \widehat{\omega}_{s}$

Conclusion

1. Using Mathematica simulations, we modeled apparent host star motion in exoplanet for different orbital eccentricity, spin-orbit ratio and obliquity

Eccentricity \& Spin-orbit ratio \rightarrow Determine apoday Hypothesis: spin-orbit ratio Eccentricity Blue apoday

Apoday:

The host star appears to move backwards
in the sky observed from planet.
\qquad Input:

Goal:
Eccentricity $\equiv e$ Spin-orbit ratio $\equiv T_{S} / T_{o}$

Steps:

Find the necessary condition for
apoday to happen

1. Set up differential equations using Kepler's La $\equiv \mathrm{w}$ so that given and T_{s} / T_{o} we get the planet orbit model. Let Mathematica solve the initial value problem numerically.
2. Plot the orbit, altitude of the
host star, and define a metric to - determine apoday.

Exoplanets determe apoday.

Sunsets

Find Boundaries

$\omega_{s} \equiv$ planet spin angular velocity
$\omega_{a} \equiv$ planet orbital angular velocity at aphelion

$$
\omega_{a}=\frac{2 \pi}{T_{O}} \sqrt{\frac{1-e}{(1-e)^{3}}}
$$

$\omega_{p} \equiv$ planet orbital angular velocity at perihelion

$$
\omega_{p}=\frac{2 \pi}{T_{O}} \sqrt{\frac{1+e}{(1-e)^{3}}}
$$

2. For the special case of zero obliquity(tilt), an exact nonlinear equations delimiting apodays in the space of orbital eccentricity and spin-orbit (day-year) ratio is derived, confirmed by numerical simulations.

Acknowledgement

This work is advised by Dr. Lindner and Dr. Kelvey

Ariel Xie

