Propellant-less Space Travel with Tethers : Swimming in Space using an Asteroid's Gravity Gradient

Gentaro Nakata John Lindner Physics Department The College of Wooster

The thesis demonstrates the possibility of propellant-less space travel with a tether, two masses separated by a variable length. By computer simulations, we show how to lengthen and shorten the tether to swim in space using the gravity gradient of a nearby asteroid, moon, or planet.

JAXA Spacecraft Hayabusa at asteroid Ryugu. (2020)

Artist rendition of TiPS(Tether Physics and Survivability) Tethered spacecraft in Earth Orbit. (1990s)

 $T = \frac{1}{2}m_1\dot{\vec{r}}_1 \cdot \dot{\vec{r}}_1 + \frac{1}{2}m_2\dot{\vec{r}}_2 \cdot \dot{\vec{r}}_2$ m_2 f = -GM r_2 r_1 $\mathcal{L} = T - V$ $d \,\,\partial \mathcal{L}$ $\partial \mathcal{L}$ $\frac{\partial \mathcal{L}}{\partial t} = \frac{\partial \mathcal{L}}{\partial r}$ $d \ \partial \mathcal{L}$ $dt \; \partial \dot{ heta}$ $\partial \theta$ $\partial \mathcal{L}$ $d \ \partial \mathcal{L}$ $\left| \frac{\partial dt}{\partial \dot{\phi}} \right|^2 = \frac{\partial \phi}{\partial \phi}$ WOLFRAM MATHEMATICA

The traditional way of changing orbits with traditional chemical rockets.

	Symbol	Parameter
	е	eccentricity
	Ε	Energy
	L	Angular Momentum
4 6	G	Gravitational Constant
	Μ	Planet Mass
	m	Spacecraft Mass

By changing the tether every 90⁰ spin, slowly spiral inward/outward.

