Knock-out Experiments on a Neuronal Boolean Model
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Neuronal pathologies in neurodegenerative disease

* Alzheimer’s disease is characterized by accumulation of intra-neuronal neurofibrillary tangles
through hyperphosphorylated Tau (pTau, Fig.1) and extracellular amyloid beta proteins leading

to subsequent neuronal death.

* Healthy neurons are postmitotic, but neurodegenerative disease was shown to trigger
neuronal cell cycle re-entry that results in neuronal death rather than division.
 The damaged, ROS-rich microenvironment in AD leads to hyper-phosphorylation of neuronal

Cdk5, which:
* promotes aberrant cell cycle entry by blocking RB and inducing E2F1
* hyper-phosphorylates Tau, leading to tangles
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Figure 1. Neurofibrillary tangles in AD.

Research question 1 : How do diseased neurons turn on cell cycle and why does this entry lead to apoptosis?

Neuronal stem cell differentiation vs. renewal

* |In response to nerve growth factor (NGF), neuronal progenitors take one of two paths, / \

stochastically chosen:
e Proliferation and self-renewal of stem-cell pool (less common)
e Differentiation into neurons (more common)

* In response to epidermal growth factor (EGF), neuronal progenitors generally enter the cell cycle €S m
* The two mutually exclusive fates are controlled by the balance of RAS-MAPK/ERK (RAS) signalling and S

the PI3-Kinase-ATK-mTOR (PI13K) pathway.
* RAS signalling induces differentiation
* PI3K pathway promotes self-renewal

Figure 2. Competing signalling pathways in neuronal
progenitor fate determination, modulated by Rasa2.

Research question 2 : How do neuronal progenitor cells entering the differentiation pathway lock down their cell cycle, and how is this linked to higher

MAPK signaling?

» Differentiation induced by loss of DLL1 (left) or exposure to NGF (right)
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* EGF-driven cell cycle entry in healthy progenitors vs diseased neurons
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Method

* Unified Boolean Regulatory network model of neuronal progenitors &
neurons (Fig. 3).
 The model includes regulation of cell cycle, apoptosis, neuronal fate
commitment and
growth signaling in response to NGF / EFG.
* Insilico experiments:
» Stable states of the model corresponding to distinct cell phenotypes
(Fig 4)
* Time courses testing the ability of the model to self-renew /
differentiate / enter cell cycle in an AD environment
* Knockdown and overexpression of key mediators (high Cdk5, pTau,
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Figure 4. Stable states of the model in a healthy microenvironment. A) Microenvironments
with no NGF, varying EGF and DLL1. B) Microenvironments with no DLL1, varying EGF and
NGF.

Results
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Figure 3. Modular Boolean model of neuronal self-renewal, differentiation
and cell cycle control.

Neurodegenerative disease
microenvironments hyper-
activate AKT by blocking
PTEN, as well Cdk5. High
Cdk5 activity pushes
neurons into the cell cycle.

Progenitors undergo normal

= cell cycle driven by PI3K &

. MAPK

signalling, while DLL1 maintains
Notch signalling and blocks
neuronal differentiation in spite
of increased MAPK activity.
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Discussion

-Rasa2 knockdown and NDD microenvironment cell death showed that the model

needed to be modified further.

- Therefore, to link E2F1 activation in neuronal cell cycle entry to apoptosis, there
were additional protein interactions we needed to put in and link with neuronal
module and apoptosis module.( see fig.4).

- Tested further knockdown /overexpression phenotypes(Cdk5 H, pTau, Rasa2 and
GSK 3 against data matched well with experimental papers.
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Mode of neuronal death in model is
incorrect: it relies on mitotic
catastrophe rather than E2F1-mediated
apoptosis

Figure.8. Additional
pathway integrated into the
Neuronal pathway for
accurate depiction of E2F1
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A model was built that was less dependent on the MAPK pathway, making
E2F1-mediated apoptosis possible through creating a more robust model
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