THE IMPACT OF NUCLEAR WEAPONS SECURITY MEASURES ON BRINKMANSHIP CONFLICT OUTCOMES:

A COMPARATIVE CASE STUDY OF THE PAKISTAN-INDIA BORDER CONFLICT AND U.S.-RUSSIAN TENSIONS OVER THE WAR IN UKRAINE

Senior IS by Cory Horgan Advisor Dr. Lantis

Overview

1 Literature Review

- Research Design &
- Methodology
- Pakistan-India
- Case Study

3

4

5

- US-Russia
- Case Study
- Analysis, Theory, &
- Conclusion

Project Background

- Junior Independent Study Beginnings
 - Nuclear safeguards
- Why nuclear weapons?
- An early focus on cyber threats to nuclear weapons security
- Project evolution throughout the process
- Familiarity with deterrence
- Interest in Nuclear Command, Control, and Communications (NC3)

Literature Review

Deterrence Theory

• Deterrence

1

- Strategic Stability
- Misperceptions Within Deterrence
- Credibility
- Minimum Deterrence
- Perfect & Rational Deterrence

- Advanced Technology Cognizance
- Inherent System Vulnerability
- Issues with NC3
- The Always/Never Dilemma
- Cyber Challenges

Inherent System Vulnerability Theory

Research Design & Methodlogy

Research Question

Do levels of nuclear security measures influence success or failure in instances of nuclear brinkmanship?

Hypothesis

If countries implement levels of nuclear defense with advanced measures technology, then they experience success within instances of nuclear brinkmanship

2

Arrow Diagram & Variables

Level of nuclear security measures (Independent Variable)

> Examples: -Physical Defense -Secure Transportation -Accident Prevention -Cyber Defense

Nuclear Brinkmanship Success (Dependent Variable)

Examples: -Prevented Military Action -Avoided Conflict -Resolution Agreements -Minimized Losses

Methodology, Cases, & Sample IV Coding

- Comparative Case Study Method
- Cases
 - India and Pakistan
 - Kargil War (1999)
 - Line of Control Conflicts
 - The US and Russia
 - Russo-Ukrainian War (2022-)
 - Crimean War (2014) Context

×	Nuclear Securit Measure						
	Cyber Security						
	Permissive Action Li						
	Accident Prevention						
	Stockpile Stewardshi						
	Secure Transportatio						
	Physical Defense						

Country X

ÿ	Security Measure is Evidenced by	Security Measure Score
	 NC3 defensibility Positive control systems Early warning systems Data encryption Hacking prevention 	
inks	 Access control safety device Microprocessor or combination Ability to permanently disable Tamper resistance 	
L	 Negative control systems Mitigate human error Normal accident resilience Glitch and bug mechanisms Ready/safe switches Environmental sensing devices 	
iip	 Sustainment activities Modernization efforts Weapons dismantlement and disposition (WDD) Production operations Surveillance 	
'n	 Use of vehicles Trailer fleets Aviation Reliable communications Transportation training Liaison programs 	
	 Protection forces Physical security systems Information security Personnel security Material control Vulnerability/risk assessments 	

3-4

Case Study Setup & Content

01

03

02

04

All case studies utilized opensource information when assessing nuclear security measures and brinkmanship

Evaluation of the six nuclear security measures for each country

Historical context on conflicts and nuclear weapons programs

Evaluation of brinkmanship conflict: which countries experienced success and failure

3-4

			Pakistan	India	US	Russia
	Nuclear Security Measure	Security Measure is Evidenced by	Security Measure Score			
Results	Cyber Security	 NC3 defensibility Positive control systems Early warning systems Data encryption Hacking prevention 	20	55	80	60
Kargil War & LOC Tensions:	Permissive Action Links	 Access control safety device Microprocessor or combination Ability to permanently disable Tamper resistance 	30	34	90	70
 India - Success Pakistan - Failure 	Accident Prevention	 Negative control systems Mitigate human error Normal accident resilience Glitch and bug mechanisms Ready/safe switches Environmental sensing devices 	22	30	90	40
 <u>Russo-Ukrainian War (1st Year):</u> United States - Success Russia - Failure 	Stockpile Stewardship	 Sustainment activities Modernization efforts Weapons dismantlement and disposition (WDD) Production operations Surveillance 	50	55	85	95
	Secure Transportation	 Use of vehicles Trailer fleets Aviation Reliable communications Transportation training Liaison programs 	10	20	100	40
	Physical Defense	 Protection forces Physical security systems Information security Personnel security Material control Vulnerability/risk assessments 	40	65	100	70

5

Analysis

Security measure scores indicate <u>advanced technology</u> measures tended to be one of the lowest scoring categories. Low cyber security and advanced technology scores may be linked to brinkmanship failure. Legacy technology versus underdevelopment due to recency.

Conventional security measures receive more attention and investment. Shared commitment across the physical security and stockpile stewardship categories. Secure transportation consistently experienced low scores.

5

Theory Implications

Inherent system vulnerability and broader cyber threats should be investigated further. If the supposed advanced technology neglect is pervasive, countries and scholars must prioritize cyber security theories that address advanced technology threats. Alway/never dilemma is not upheld or solved by continued conventional security investment,

Deterrence was insufficient in the Kargil War and the first year of the Russo-Ukrainian War. Deterrence may have wavered, but Kargil was a limited conflict and deterrence began to stabilize at the end of the first year of the Russo-Ukrainian War. Room for strategic stability and to help explain the conflicts.

Conclusion and

ldeas

Thank You

