THE COLLEGE OF WOOSTER

Tile Invariants and an Exploration of Tilings with Ribbon Pentominoes and L-Pentominoes

Lucy Wickham

Advised by Dr. Subhadip Chowdhury
Department of Mathematical and Computational Sciences

Abstract

In this Independent Study, we survey the mathematics of tiling 2-dimensional regions with polyomino shapes of varying sizes. We investigate tile invariants to prove
tileability and examine tileability and examine specific tile invariants, such as the Conway/Lagarias invariant.
Using "Tile Invariants for Tackling Tiling Questions" by Dr. Michael Hitchman as a Using "Tile Invariants for Tackling Tiling Questions" by Dr. Michael Hitchman as a as coloring, boundary words, height, and group theoretic techniques. After this as coloring, boundary words, height, and group theoretic techniques. After this background is established, we answer an open problem posed by Hitchman in the
affirmative - we prove the requirements for a modified rectangle to be tileable by area affirmative - we prove the requirements for a modified rectangle to be tileable by
5 ribbon tiles. In the final part of this project, we consider L-pentominoes and 5 ribbon tiles. In the final part of this project, we consider L-pentominoes and
conjecture the requirements for a rectangle to be tileable by this tile set. We prove the conjecture in certain cases.

Key Concepts

In this project, we worked with polyomino tiles, which are two-dimensional shapes In this project, we worked with polyomino tiles, which are two-dimensional shapes
made up of unit squares connected along the squares' edges. A tile set is a collection of made up of unit squares connected along the squares edges. A tile set is a collection
tiles. One important tile set is the set of ribbon tiles: a ribbon tile of area \boldsymbol{n} is a tiles. One important tile set is the set of ribbon tiles: a ribbon tile of area n in a
polyomino of n squares laid out in path such that from an initial square, each step
 where 0 is a step to the right and 1 is a step up.
We place tiles into a region, which is made of a lattice grid. A family of regions are a collection of regions which share a property. Examples include rectangles and modified rectangles, which are rec
right cell removed, as seen to the right.
Given a tile set and a region, we can ask questions about tileability. A region is tileable by a tile set if the region can be covered with the tiles from the set without gaps or overlaps. To solve questions of tileability, we use tile invariants, which are mathematical properties that remain unchanged no matter how we tile the region. A tile invariant depends on the tile set and family of regions, and it is a linear combination of the different tiles. The area invariant states that if all the tiles in the tile set are of area n, then the sum of the instances of all the different tiles must add up to the area of the region divided by n. Another example is the Conway
Lagarias Invariant for the tile set of ribbon tiles of area instances of tile t. This invariant states that for the family of simply connected regions $a_{2}-a_{3}$ is a constant number
One technique that can be used to find invariants is coloring. A coloring is when each cell of a region is given a color, and each color corresponds to some integer or group element. A color sum is when we sum up the cells of a specific region or tile. Given an abelian group G with identity element e, a coloring map $\boldsymbol{\phi}: \mathcal{R}_{\text {all }} \rightarrow \boldsymbol{G}$ is a function that assigns each region R to its color sum $\phi(R)$. A T-coloring is a coloring map ϕ in which $\phi(t)=e$ for each tile t in the tile set T, no matter where t is placed in the lattice.
Hitchman proved that if a region R is tileable by T then $\phi(R)=e$ Hitchman proved th if a region
Another technique utilizes boundary words. First, label the edges of the grid lattice, where x is the horizontal edges and y is the vertical edges. These are directed edges. Each path walked through the lattice can be represented as a word, and the path of the outline of the tile is the boundary word. The boundary word of any tileable region R can be expressed as the product of conjugates of the tiles' boundary words. The winding number is an invariant of a loop in a plane. In this context, it counts the number of times the boundary path encloses a specific tile.
The tile counting group is a group whose elements are tile invariants. We define the tile counting group as $G(T, R)=\mathbb{Z}^{n} / H$, where H is the normal subgroup of \mathbb{Z}^{n} generated by all possible difference vectors obtainable from our family of regions R and the tile set T. This group is a useful tool to find invariants because computing the tile counting group is the same as describing all invariants. It can tell us how many total invariants apply to a tile set and family of regions.

Tiling Modified Rectangles with Ribbon Tiles We considered a question posed by M(ab) can be tiled by the tile set of height-1 area 5 ribbon tiles, as pictured to the right? To start, the notion of height is critical for the following results. In a
 is critical for the following results. In a

The set of height-1 area 5 ribbon tiles has 8 tiles ribbon tile set, each tile is represented by a string of binary, and if we sum that string modulo 2, we on the notion of height:

- Lemma 2.7. Suppose there exists a tiling of a simply connected region R by the tile set T_{n} in which an odd number of height-0 tiles are used. Then the set of height-1 tiles of area n does not tile R.
Pak utilized this lemma to prove a result about the tileability of rectangles with the above tile set: Theorem 3.2. The rectangle $[a \times b]$ can be tiled by the tile set of height-1 area 5 ribbon tiles if and only if $10 \mid a b$ and $a, b>1$.

Hitchman then proved a result tiling modified rectangles with ribbon tiles of area 4: Theorem 3.3. Let $a, b>1$. The modified rectangle $M(a, b)$ can be tiled by the tile set of height-1 area 4 ribbon tiles if and only if $a \equiv 2(\bmod 4)$ and b is odd; or a is odd $a n d a b \equiv 2(\bmod 8)$.
Using the proof techniques used by these two mathematicians, we proved this result concerning tiling modified rectangles with ribbon tiles of area 5

- Theorem 3.4. Given $M(a, b), a b \equiv 2(\bmod 10)$ if and only if $M(a, b)$ is tileable by the tile set of height-1 area 5 ribbon tiles.

For this proof, we need the following two lemmas. The first follows from the area invariant. The second follows from the symmetries of our chosen tile set.
Lemma 3.1. If $M(a, b)$ is tileable by our chosen tile set, then $a b \equiv 2(\bmod 5)$.
Lemma 3.2. Given any $M(a, b)$ and our chosen tile set, if $M(a, b)$ is tileable, then $M(b, a)$ is tileable.
To prove the forward direction of Theorem 3.4, we must prove $a b \not \equiv 7(\bmod 10)$. We consider 4 cases, built by the conjugacy classes, and proceed by induction. For example, our first case is when $a \equiv 3$ (mod 1$), b \equiv 9(\bmod 10)$. We prove $\mathrm{M}(3+10 k, 9+10 \ell)$ is not tileable for $k, l \in \mathbb{N}$. In the figure Lemma 27. We can then expand this in either direction to show that $\mathrm{M}(13,9)$ and $\mathrm{M}(3,19)$ are also Lemma 2.7.
untileable.

To prove the converse, we also use induction. We assume the height is always even. The base cases are $\mathrm{M}(2,6), \mathrm{M}(4,3)$, and $\mathrm{M}(8,4)$. For the induction step, there are two directions to consider, as we can either expand the height or width. For the first direction, we prove that if $\mathrm{M}(2 \mathrm{k}, \mathrm{b})$ is tileable, then $\mathrm{M}(2 \mathrm{k}, \mathrm{b}+5)$ is tileable. In the figure to the right, the red section represents the $\mathrm{M}(2 \mathrm{k}, \mathrm{b})$ which is tileable. We can expand its width by 5 while retaining the same parity of height-0 tiles used, by adding a column which is the union of $\mathrm{M}(2,6)$ and $[2 \times 5]$ copies. For the second direction, we prove that if $\mathrm{M}(2 \mathrm{k}, \mathrm{b})$ is tileable, then $\mathrm{M}(2(\mathrm{k}+5)$, b) is tileable. In the vertical direction, we can do a very similar expansion but increasing the height by 10 instead of 5 .

Future Work

The biggest open questions from this research concern the conjecture that are still unproven concerning whether $[(2 \mathrm{n}+1) \times(10 \mathrm{k}+5)]$ rectangles are tileable.
Consider the set of ribbon tiles of area 6 and the family of modified rectangles. What dimensions must the modified rectangle be for it to be tileable?

- Are there similar frieze patterns to be found when tiling rectangles with L-tiles of area 4 or 6 ? If so, is there any relationship between that frieze pattern and the one we found for L-pentominoes?

Tiling Rectangles with L-Pentominoes
We asked what rectangular regions can be tiled by L-pentominoes, the tile set seen to the right. We consider each of these four cases individually: $[2 n \times 10 k],[(2 n+1) \times 10 k],[2 n$ $\times(10 k+1)]$, and $[(2 n+1) \times(10 k+1)]$.
The smallest tileable rectangles are $[2 \times 5]$ and [7×10], as seen to the right. It is immediately evident that the two cases with a height of $2 n$ can be tiled by unions of the $[2 \times$ 5] rectangle.
Theorem 4.1. Every $[2 n \times 10 k]$
rectangular region is tileable by the set of
L-pentominoes.
L-pentominoes.
Theorem 4.3. Every $[2 n \times(10 k+5)]$
rectangular region is tileable by the set of L-pentominoes.
For rectangles of the form $[(2 n+1) \times 10 k]$,
we produced the following results:
Lemma 4.1. Every [$3 \times 10 \mathrm{k}]$ rectangle is
untileable by the set of L-pentominoes.
Theorem 4.2. Any $[(2 n+1) \times 10 k]$
rectangular region is tileable by the set of
 $\square \square \square$
$\square \square \square \square$

 \square
\square日 L-pentominoes when $n \geq 2$
We conjecture that $[(2 n+1) \times(10 k+5)]$ rectangles are not tileable. This proof is incomplete. However, we have produced a couple results to this end, concerning the case's smallest rectangles: Lemma 4.2. The [3×5] rectangle cannot be tiled.
Lemma 4.3. The [$3 \times(10 k+5)]$ rectangle cannot be tiled.
We also considered the different ways to tile the rectangle, particularly rectangles of the form [$5 \times 2 n]$. Using the frieze pattern seen below, we can construct a rectangle of any even width and height 5 . We Theorem 4.4. For a $[2 n \times(10 k+5)]$ rectangular region where $\mathrm{n} \geq 2$, there exists a tiling with 2 Type 1 L-pentominoes and $(2 n-2)(2 k+1)$ Type 2 L-pentominoes. For the 2 Type 1 Lpentominoes, they will either be a t_{4} and a t_{1}, or a t_{2} and a t_{3}.

$[5 \times 8]$
[5×10]

References
J.H. Conway and J.C. Lagarias. "Tiling with polyominoes and combinatorial group theory". In Journal of Combinatorial Theory, Series A 53.2 (1990), pp. 183-208.

- Igor Pak. "Ribbon Tile Invariants". In: Transactions of the American Mathematical Society 352.12 - Igor Pak. "Ribbon Tile I
(2000), pp. 5525-5561.
- Michael P. Hitchman. Tile Invariants for Tackling Tiling Questions. Cham, Switzerland: Springer International Publishing, 2017.

