
Kyle Rossi | Computer Science | Advised by Daniel Palmer

Swarm and Steady Wins the Race: Visualizing Constraint
Satisfaction Problems Using Swarm Intelligence

Swarm Intelligence
Swarm intelligence (SI) encompasses any algorithm inspired by the
social behaviors found in insect or animal colonies. SI has two
important components. The first is that swarms are self-organizing,
meaning that simple individual behaviors lead to complex group
behaviors. This is accomplished via the use of positive/negative
feedback, frequent interaction between individuals, and
randomness. The second is that any "agent" in a swarm acts on
their own and only make decisions by using local information
(Figure 1). [2]

Project Overview
This project visualizes a complex constraint satisfaction problem
(CSP), with basis in automated manufacturing, using the methods
and techniques available in swarm intelligence (SI). The final
program can use a swarm of agents to create multiple pathways
between fixed locations on a screen.

References:
1. Sally C. Brailsford, Chris N. Potts, and Barbara M. Smith. “Constraint satisfaction problems: Algorithms and applications”. In:
European Journal of Operational Research 119.3 (1999).
2. Leen-Kiat Soh. “Swarm Intelligence.” Swarm Intelligence - UNL Computer Science & Engineering, University of Nebraska, 2016.

Agent and Pickup Behaviors
Agents (circles) can swap between holding or not holding a pickup
(square). Pickups are split into three types: movables, unmovables,
and permanents. Agents can pick up movables but are unable to
pick up unmovables. Permanents are mostly "invisible" to agents,
except that movables cannot be placed on top of a permanent. Each
have their own color, as displayed in Figure 3.

Find the
shortest path

to a food
source

Figure 1. A swarm of simple ants can perform a complex task

Constraint Satisfaction Problems
For a constraint satisfaction problem (CSP), given a set of variables,
all variables must satisfy every constraint. In practice, an efficient
method to find a solution might not exist, so it is adequate that only
most of the constraints are satisfied. Importantly, CSPs generally
have multiple solutions. Common examples include the graph
coloring problem and cryptarithmetic puzzles. A solution to the
former shown is shown below, where none of the adjacent states
have the same color (Figure 2). [1]

Figure 2. A possible solution to the map coloring problem with
the map of Australia

Figure 3. All possible colorations for agents and pickups

For the Simple CSP, the agents
needed to space out all
pickups at least 100 pixels
away from one another. Two
algorithms were implemented
to accomplish this. For
Algorithm #1, whenever an
agent places a movable, it
becomes an unmovable.
Movables stay as movables
when placed by agents in
Algorithm #2. Although
Algorithm #2 has the potential
to get out of tricky situations,
its performance was worse
than Algorithm #1 (Figure 4).

Figure 4. The average number of
iterations both algorithms
needed to space out a set

number of pickups; 100 runs for
each algorithm

Algorithm #1 Algorithm #2

Results: Complex CSP
For the Complex CSP, the
agents needed to create paths
from one unmovable to
another. Two algorithms were
implemented to accomplish
this. Model A focused on loose
placement conditions while
requiring more pickups to
make a path. Model B has
stricter placement rules in
place to make pathways more
efficient. Model A created 2.27
paths on average, while Model
B made 2.87 paths on
average. When making only 1
or 2 paths, Model B has the
edge, but Model A performs
much better for 3, 4, or 5 paths
(Figure 5).

Results: Simple CSP

Figure 5. The average number of
iterations both algorithms

needed to create 1, 2, 3, 4, or 5
paths between unmovables; 100

runs for each model

Path Creation Model A (in-progress) Path Creation Model B (in-progress)

Path Creation Model A (best case) Path Creation Model B (best case)

	Slide 1: Swarm and Steady Wins the Race: Visualizing Constraint Satisfaction Problems Using Swarm Intelligence
	Slide 2: Swarm and Steady Wins the Race: Visualizing Constraint Satisfaction Problems Using Swarm Intelligence
	Slide 3: Swarm and Steady Wins the Race: Visualizing Constraint Satisfaction Problems Using Swarm Intelligence

