

6 5	•	•	······		
sse 4	FMO Alone			•	••••••
∑. ∑.	DUF Alone				
Log	△DUF + FMO Pea	k 1			
2 1	□DUF + FMO Peal	< 2		y = -0.3037 R ² = 0	7x + 9.0434).9997
0	1	I	1	1	
10).5 11.5	12.5 Eluti	13.5 on Volume	14.5	15.5

for fully reduced THP labeled 5,6-DHPip-2O.

	Oligomeric Status	Expected Monomeric Mass	Calculated Mass (kDa)	Log Mass From Graph	Elution Volume	Enzyme(s)
	Trimer	33	81.3	4.91	13.61	DUF Alone
	Trimer	50	171	5.23	12.55	FMO Alone
Figure	Separate					DUF + FMO
anaero	Trimers	33+50	174	5.24	12.52	Peak 1
buffer.	Separate					DUF + FMO
aerobi	Trimers	33+50	82.4	4.92	13.59	Peak 2

reduced THP. (C) EIC for fully reduced THP labeled 5,6-DHPip-20.

Counts vs. Acquisition 1 ime (min)	Counts vs. Acquisition Time (min)
ISean Frage 125 DV 2, pos d 12 2 3.487	x10 ⁴ +ESI EIC(160.0246) Scan Frag=125.0V 2, pos.d 4.75 1 1 2
10 ³ 128.0347 Reaction 2: THP →	B $\frac{436}{4}$ 5.0 x 10 ⁴ B $\frac{376}{25}$ $\frac{256}{256}$ $\frac{256}{256}$ $\frac{15}{156}$ $\frac{1}{15}$
15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 8 95 10 105 11 115 12 125 13 135 14 145 Counts vis Acquitation Time (mm) 103 103 3492 2 3492 2 3492 2 3492 2 3492 2 349 349 34	$\begin{bmatrix} 0.75 \\ 0.25 \\ 0.25 \\ 0 \end{bmatrix} \xrightarrow{0.5 \text{ i } 15 2 25 3 3 5 4 45 5 55 6 05 75 8 85 6 95 10 10.5 11 11 512 125 13 13.5 14 14.5 14 14.5 10^{3} \end{bmatrix}^{1/2}$
128.0347 Reaction 3: THP $\xrightarrow{O_2}$	C $\frac{336}{356}$ C $\frac{375}{256}$ $\frac{257}{256}$ $\frac{160.0246}{160.0246}$ Reaction 3: THP $\xrightarrow{O_2}$
Image: Scone Frage 125.0V 4_post.d	10 0.5 0.5 0.5 0.5 1.5 2.5 0.5 1.5 2.5 0.5 1.5 2.5 0.5 1.5 2.5 0.5 0.5 1.5 2.5 0.5 0.5 1.5 2.5 0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1
10 ⁵ 128.0347 Reaction 4: THP $\xrightarrow{\text{DUF}}_{O_2}$	D $\frac{1}{160.0246}$ Reaction 4: THP $\frac{\text{DUF}}{\text{O}_2}$
$E \xrightarrow{HO}{NOH} HO \xrightarrow{HO}{HO}{HO}{HO}{HO}{HO}{HO}{HO}{HO}{HO}$	$E \xrightarrow{COOH}_{H} \underbrace{COOH}_{H} \underbrace{E}_{COUNTS Vs. Acquilition Time (min)}^{OI} \underbrace{COOH}_{H} CO$
Cs of THP scanning for m/z = 128.0347. (A)	^{[HP in} Figure 6. EICs of carbamic acid intermediate scanning f

² NOH 111.0320	
1 11.5 12 12.5 13 13.5 14 14.5	
OH NOH 129.0426	
11 11.5 12 12.5 13 13.5 14 14.5	
[▲] N [↓] ОН Н	

Reaction	Peak Height for DHP	Peak Height for Reduced THP	Peak Height for Reduced THP (5,6- DHPip-2O)
Assay	но N ОН	HO N OH	O N OH H OH
Sample O: DHP in aerobic buffer with no <i>Bn</i> enzymes	4.0 x 10⁵	8.0 x 10 ³	5.5 x 10 ³
Sample D: DHP + FMO + HP + NADH	4.0 x 10 ⁵	6.0 x 10 ⁴	4.0 x 10 ⁴
% Change	0%	650% increase	627% increase