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• Future experiments would use immunohistochemistry or tyrosine hydroxylase staining to assess for the loss of dopaminergic neurons in the striatum 
and the substantia nigra.
• To further improve the experimental design, using a higher sample size, finer motor tasks, a higher concentration of the 6-OHDA injections, or a 

transgenic Park2 or LRRK2 mouse models of Parkinson’s would be needed. 
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• Parkinson’s Disease is a motor movement disorder 
characterized by the death of dopaminergic neurons in the basal 
ganglia.

• Nearly a million Americans are living with Parkinson’s Disease.
• It has multiple possible causes: Tau Tangles, Lewy Bodies, 

Genetic Mutations.
• Studies of Parkinson's patients have provided evidence for 

altered glucose metabolism.
• The Pentose Phosphate Pathway requires thiamine to breaks 

down glucose to produce NADPH and 5-carbon sugars.
• In Parkinson’s, there is a decline in the activity of the PPP 

enzymes in the putamen.
• A striking feature of Parkinson's is a profound decrease in the 

level of mitochondrial complex I activity in the substantia nigra.
• Benfotiamine proved to improve glucose metabolism alterations 

associated with other neurodegenerative diseases.

Introduction

Aims

Methods

Results

• This study aims to investigate how daily oral 200mg/kg/day 
of benfotiamine would affect the motor deficit and the 
glucose metabolism in a 6-OHDA mouse model of 
Parkinson's disease.
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Figure 1. Timeline of the experimental procedure

Figure 2. Locomotor activity in the open field maze. A.) Mice that 
received the benfotiamine treatment did not show any difference in 
distance traveled compared to mice that did not receive benfotiamine. 
Neither group showed any significant difference in distance traveled 
compared to the negative control mice. B.) Mice that received the 
benfotiamine treatment did not show any difference in the percentage 
of time moving compared to mice that did not receive benfotiamine. 
Neither group showed any significant difference in the percentage of 
time moving compared to the negative control mice. C.) There was no 
difference between groups in the number of turns. Errors bars 
depicted the standard error of the mean.

Figure 3. Motor behavior assessment in the rotarod 
task. Following stereotaxic surgery, mice were treated 
with benfotiamine for 3 weeks then got exposed to the 
rotarod task. There was no difference between groups in 
the rotarod task. Errors bars depicted standard error of 
the mean.
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were isolated from the brain and run through an 
ELISA for NADPH/NADP+. There was no difference 
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striatum. Errors bars depicted standard error of the 
mean.
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Figure 5. Standard curve of NADPH. Standard 
calibration curve of NADPH at various known 
NADPH concentrations against the absorbance at 
450nm of these known concentrations.


