The Effects of Benfotiamine on Glucose Metabolism in a 6-OHDA

mouse model of Parkinson’s Disease

el Aymane Lachhab, Altredo Zuniga
WOOSIER Department of Neuroscience, The College of Wooster

Introduction Results

* Parkinson’s Disease 1s a motor movement disorder 10

characterized by the death of dopaminergic neurons 1n the basal ||a. B.

. 8000 = 100- . . .

ganglia. - Figure 3. Motor behavior assessment in the rotarod
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altered glucose metabolism.
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* In Parkinson’s, there 1s a decline in the activity of the PPP . : e

enzymes in the putamen. 15 s T T Figure 5. Standard curve of NADPH. Standard
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Figure 2. Locomotor activity in the open field maze. A.) Mice that T
“ received the benfotiamine treatment did not show any difference in 5
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Neither group showed any significant difference in the percentage of = mean. |
“ time moving compared to the negative control mice. C.) There was no *
difference between groups in the number of turns. Errors bars
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* Future experiments would use immunohistochemistry or tyrosine hydroxylase staining to assess for the loss of dopaminergic neurons 1n the striatum
and the substantia nigra.
€ * To further improve the experimental design, using a higher sample size, finer motor tasks, a higher concentration of the 6-OHDA 1njections, or a
¥ —— transgenic Park2 or LRRK?2 mouse models of Parkinson’s would be needed.
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