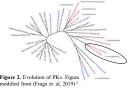
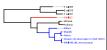


Does Arginine Kinase (AK) Bias the Switch? Impact of an AK Deletion on Myxococcus xanthus Fruiting Body Formation in Strains within Tan and Yellow Phases

Shahad Al-jarah and Dr. Dean Fraga; Program in Biochemistry and Molecular Biology, The College of Wooster, Ohio


Background and Significance


Phosphagen Kinases (PKs) catalyze the reversible reaction of phosphate transfer between ATP and a guanidino group creating an ATP buffering system 1.

igure 1 Reversible reaction catalyzed by Arginine Kinase converting ATP and L-arginine to ADP No ospho-L-arginine in the forward direction

PKs were associated mainly to metabolically demanding eukaryotes but have been found in prokarvotes despite bacteria's preference for a concise genome 1,2

eies in blue including M. xanthus incorporated AK likely from a HGT even Figure modified from (Fraga et. al, 2019

The dAK strain was recently

ound to fluctuate in terms of

colony color flipping to tan phase

This was simultaneous to a change

in developmental phenotype with

FB ranging from arrested to

previously robust arrested FE

· Looking further into the

color change, M. xanthus

was found to undergo a

Arginine Kinase has been found in Myxococcus xanthus and was biochemically active in vitro and with a role in protective mechanisms including starvation induced fruiting body (FB) formation

Fluctuation in Phenotype Previously Associated to an AK Loss

Figure 4. Fruiting to starvation media TPM. Figure modified from (Bragg et. al. 2012)

When subject to rapid starvation, strains lacking AK (dAK) have an arrested developmental phenotype with faint weblike aggregates (Bragg et al., 2019)3.

more readily

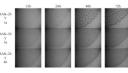
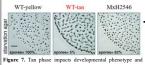



Figure 5. Fruiting body formation of dAK strain is rescued phenotype-deviating from variable even within technical replicates. Images of three dAK-2b Y samples with varying phenotypes selected

from the 10 replicates subject to starvation media TPM

spontaneous phase change observed phenotypically by conversion of colony color igure modified from (Dziewanowska et. al, 2014)5 between yellow and tan 4,5,6.

The variable phenotype was resemblant to that of tan phased WT that similarly impairs FB development 6.

Hypothesis & Research Objectives

Does an Arginine Kinase loss change the color phase preference which may then be attributed to the

- Determine the flipping frequency of dAK strains and if there is a color phase preference Examine developmental phenotype of strains is dependent on initial phase- if the isolated pha prompt rescued or exacerbate arrested FB phenotypes
- Analysis of dAK's genetic expression to identify any changes correlated with arrested development

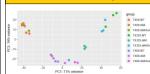
Hypothesis: dAK strain's developmental variability is associated to the phase changing mechanism due

Loss of AK Leads to a Tan Phase Preference

Table 1. Frequency of Tan Colonies

dAK strains increase the tan flipping rate. Losing the ATP buffering capacity likely induces the cell to switch towards tan phase to decrease the requirement of energy demanding processes and takes advantage of the limited lysing of cells due to prevention of toxin and antibiotic buildup 5,6.

Quantitative Data Supports Variability Significance


Table 2 Area* of Defined Contours

Sample	15 hours	24 hours	48 hours	72 hour
Wild type	566 ± 727	746 ± 865	829 ± 814	843 ± 84
ΔAK2b Y	149 ± 262	224 ± 362	501 ± 897	533 ± 97
ΔAK2b Y DFs	96 ± 249	154 ± 251	343 ± 643	361 ± 66
ΔAK2b T	64 ± 179	197 ± 278	359 ± 484	372 ± 52
ΔAK2b YT	73 ± 222	271 ± 364	636 ± 724	641 ± 73
ΔAK2b YT2	122 ± 288	200 ± 342	422 ± 802	439 ± 77
WT-0228 2cT	516 ± 714	735 ± 903	813 ± 755	901 ± 88
WT-0228 3bT	451 ± 636	624 ± 750	788 ± 750	789 ± 76
ΔAK2b-0228 3a1	68 ± 222	247 ± 398	557 ± 802	588 ± 86
ΔAK2b-0228 3a5	153 ± 398	131 ± 268	388 ± 857	406 ± 95

Area of FBs ranged from 5.5 to 9999, averaged across 5 trials with all samples indicating significance when compared to WT and dAK Y baselines except 3a5 identical to dAK Y's initial lag.

Intensity values ranged between 0 to 255 with lower numbers corresponding to darker mounds. All samples show significance except tan phased dAK samples that attain WT FB's darkness 48 hours post starvation confirming tan dAK's rescued phenotype in terms of opacity.

Genetic Expression Changes Govern Developmental Phenotype

Throughout development samples are spread further apart to show FB formation and sporulation require high genetic regulation. Surprisingly, dAR (revertant) clusters closer to WT samples despite AK deletion.

	Differentially	upregulated		downregulated	
Samples	expressed				
	genex	total	LC>1	total	LC%-I
WT 0 vs 8	2268	1055	972	1213	1163
WT 0 vs 32	3808	1858	1538	1950	1737
dAR 0 vs 8	2702	1306	1069	1396	1242
dAR 0 vs 32	3812	1845	1458	1967	1683
dAK 0 vs 8	3815	1873	1490	1942	1605
dAK 0 vs 32	4090	2062	1417	2028	1556

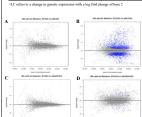
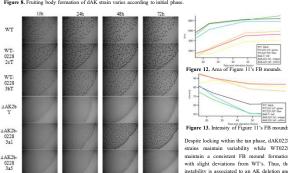


Figure 15. dAK upregulates more genes in comparison to


DEGs increase throughout development with spore formation and maturation (32 hours) being the most dramatic change.

- dAK (arrested) has ~1.5x WT's DEGs at 8-hour time point, indicating importance to the variability.
- The more consistent revertant phenotype is genetically identical to WT at 0 hours and with minimal changes at 8 and 32 hours
- dAK upregulates more genes in comparison to WT and dAR, associating the variability and ability to toggle phenotypes with

Table 5. Genetic profile differences across strain


Samples	Differentially	upregulated		downregulated	
Janques	genes	total	LC94	total	LC%
T vs dAK 0	39	39	39	0	0
T vs dAK 8	87	73	70	14	11
FT vs dAK 32	2567	1327	767	1240	469
T vs dAR 0	0	0	0	0	0
FT vs dAR 8	6	5	5	1	1
FT vs dAR 32	40	24	17	16	11
AK vs dAR 0	29	1	1	28	28
AK vs dAR 8	177	18	11	159	121
AK vs dAR 32	1044	366	119	678	442

Arginine Kinase Developmental Phenotype Variability Indicates Switch-like Behavior

arrested in early development with sligh variability across replicates

Figure 8, Fruiting body formation of dAK strain varies according to initial phase

Model of dAK's Instability

dAK strains push the majority of the population to be within the tan phase due to being the less energy demanding state.

- · Variability in developmental phenotype is associated to yellow
- · Data supports yellow phase synergism forms mature FB leading to a rescued phenotype.
- This supports previous modeling of yellow phase coating of FB

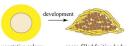


Figure 17. Model of vellow phased colonies' coating of mature FBs to form dark defined spores in WT. Figure modified from (Dziewanowska et. al. 2014).

dAK's phase variability is masked within MXAN 0228 deletion strains that is likely overwhelmed when the strain is subject to stress indicating a notential threshold

Figure 18. Proposed mechanism of dAK0228 strains' yellow phase being overwhelmed when subject to stress

Future Research

- Repetition of experiments while refining the code used to collect quantitative data to add more parameters to better quantify results .
- Conduct RNA sequencing during development with WT0228 dAK0228 samples to see if yellow phase masking is overwhelmed during starvation stress by confirmation of increased DKX gene expression that was previously inhibited 6.
- Create double mutants with the 10 dAK upregulated genes (bolded in Table 6) to confirm their role in arrested phenotype
- Look further into pathways the DEGs map onto to create a mechanism for AK action computationally, thus better understanding its role within M. xanthus and ultimately evolution within proteobacteria.

Acknowledgements

The authors wish to acknowledge support from Dr. Dean Fraga, College of Wooster's Program in Biochemistry and Molecular Biology, Henry J. Copeland Fund for Independent Study, an

References

Ellington, W. R. (2001). Annual Review of Physiology, 63(1), 289–325.

Fraga, D., Stock, K., Aryal, M., Demoll, C., Fannin, L., & Snider, M. J. (2019). Co.

Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 233, 60-71.

3 Bragg I Raikovic A Anderson C Curtis R Van Houten I Begres B Nanles C

Snider, M., Fraga, D., & Singer, M. (2012). Journal of Bacteriology, 194(10), 2668–2676. Lauc, B. E., & Gill, R. E. (1995). Journal of Bacteriology, 177(14), 4089–4096.
 Dziewanowska, K., Settles, M., Hunter, S., Linquist, I., Schilkey, F., & Hartzell, P. L. (2014)

PLoS ONE, 9(4), e95189. Furusawa, G., Dziewanowska, K., Stone, H., Settles, M., & Hartzell, P. (2011). Molecular Microbiology, 81(3), 784-804.

Phase Variation Involved in dAK's Developmental Rescuing Capability

ble 6. D	EGs of WI	Γ0 vs dAK0		Table 7. Expression ^a of	DKxanthe	ne Pig	ment S	ynthesi	s Gene
due adj.	Log Fold Change	MAXN #	Annotation	Annotation ^b	MXAN#	WT0 vs	dAK 0	dAR 0	dAK32
signaling and	development resp	ропис		Annotation"	MXAN#	WT32	dAK32	44K 32	dAR32
1.79E-14	5.10	MXAN 7370	Serine threorine-protein kinase	Hypothetical protein	MXAN 4288	2.35	0.86	1.36	0.91
1.80E-12	4.98	MXAN_7371	Serine theconine-protein kinase	dkxM: polyketide synthuse	MXAN 4292	0.64	-1.68	-0.33	1.64
3.07E-11	4.26	MXAN 4371 ^b	Serine theconine-protein kinase	dkxK; arsenical-transporting ATPase					
8.52E-08	3.92	MXAN 2840	Serine threorine-protein kinase	family	MXAN_4294	0.81	-1.82	-0.27	1.82
7.16E-07	3.87	MXAN 4479°	Serine threorine protein kinase	dkxJ; patatin-like phospholipuse	MXAN 4295	1.26	-0.89	0.33	1.64
1.42E-07	2.72	MXAN 4373	Serine threorine-protein kinase	family	MAAN_4293	1.26	-0.89	0.53	
1.31E-04	2.72	MXAN 3272	Serine threorine-protein kinase	dkxG; polyketide synthuse type l	MXAN 4298	0.43	-1.84	-0.50	1.76
1.31E-03	2.11	MXAN 4482	Serine threorine-protein kinase	dkxG; polyketide synthuse type l	MXAN 4299	0.74	-1.49	-0.15	1.74
1.32E-02	1.50	MXAN 7269	Serine threorine-protein kinase	dkxE; polyketide synthuse type 1	MXAN 4301	0.15	-1.95	-0.98	1.59
7.56E-03	1.67	MXAN 7464	lg-like domain-containing protein	*Differential expression is expressi	ed in log fold o	hanors with	h hase 7 I	inregulate/	Lector
1.58E-06	2.95	MXAN 6104	Response regulator	have a positive log fold change wh					
transport									Values are
3.83E-04	4.50	MXAN 5858	Sodium/solute symporter	correspondent to significantly expr	ressed DHus. "	Annotation	s and path	way -	
1.97E-04	3.61	MXAN 5859	lon transporter						
abolic functio	6			 The rescue 	- 4	dAK.	21.	-4	rain
3.07E-11	3.92	MXAN_2399*	Protein kinase	• The rescu	ea	UAK.	-20	St	raın
3.92E-04	3.57	MXAN 2252	Phosphagen kinase						
9.54E-03	2.03	MXAN_4369	Class I SAM-dependent methyltransferase	downregulates	all but	10	DEG	s bol	ded
2.53E-03	1.96	MXAN_0050	AHH domain-containing protein (toxin)						
4.51E-02	1.76	MXAN 1674	NAD-dependent epimerase/debydratase	showing incre	eased o	geneti	ic es	xpress	sion
		-	family protein	bile wing mer	ouseu ;	501101		·pr ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	proteins and trans-			leads to arreste	d nhanc	trmo			
3.07E-11	4.51	MXAN 6998	HTH domain-containing protein	icaus to arreste	a pilette	чурс.			
5.16E-09	3.98	MXAN 4481	HTH domain-containing protein						
1.01E-05	3.32	MXAN 4372	HTH domain-containing protein						

· Upregulation of tan phase genes is found within the arrested phenotype

proposed to be due to vellow phase reversion

Conversely the upregulation of yellow phase genes in the rescued strain show potential yellow phase complementation and synergism of metabolites to allow FB mound maturation