

Scan, Click, Diagnose: An Al-Powered System for Real-Time Skin Condition Detection

Habiba Hye, Department of Computer Science, The College of Wooster

Introduction

Millions suffer from misdiagnosed or undiagnosed skin conditions—especially in underserved regions with limited access to dermatologists. This project introduces a real-time diagnostic tool that combines patient symptoms and images using machine learning to deliver fast, reliable skin condition predictions through a web app.

Research Questions

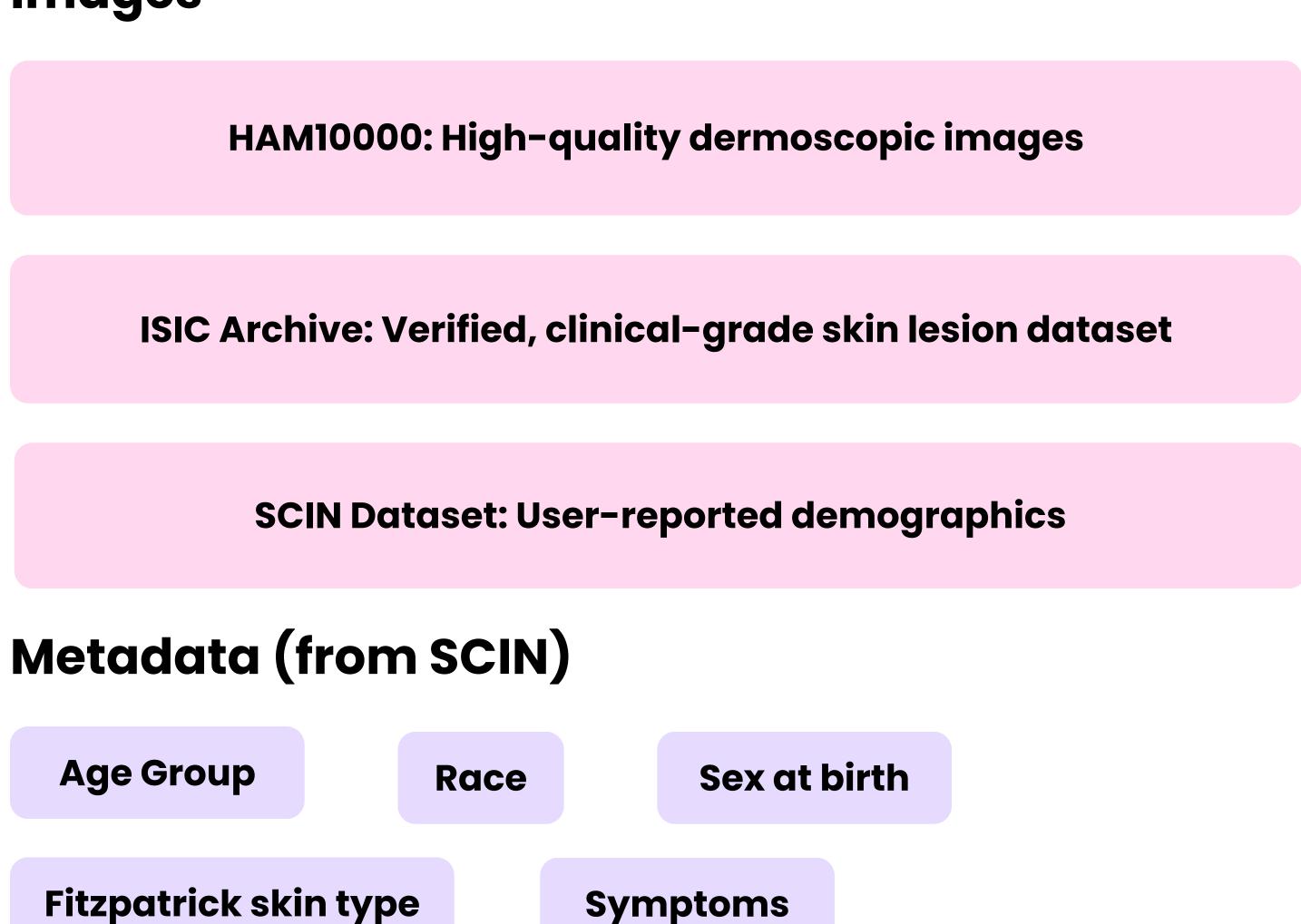
RQ1: How can the integration of an image-based CNN model with a metadata-driven machine learning model improve overall diagnostic accuracy?

RQ2: What impact do additional patient attributes, such as age, sex, and symptoms, have on model performance and prediction reliability?

RQ3: How can model architecture, training strategies, and ensemble learning techniques be optimized to ensure scalability and robustness across diverse datasets and populations?

Methodology - Datasets

Images



Methodology - Models

Image Model: EfficientNet (Convolutional Neural Network)
trained on HAM10000 + ISIC

Metadata Model: Random Forest Classifier using structured fields from SCIN

Combined Model: Ensemble Meta-Learner that fuses predictions from image and metadata models. Final predictions generated using a weighted voting mechanism

Results

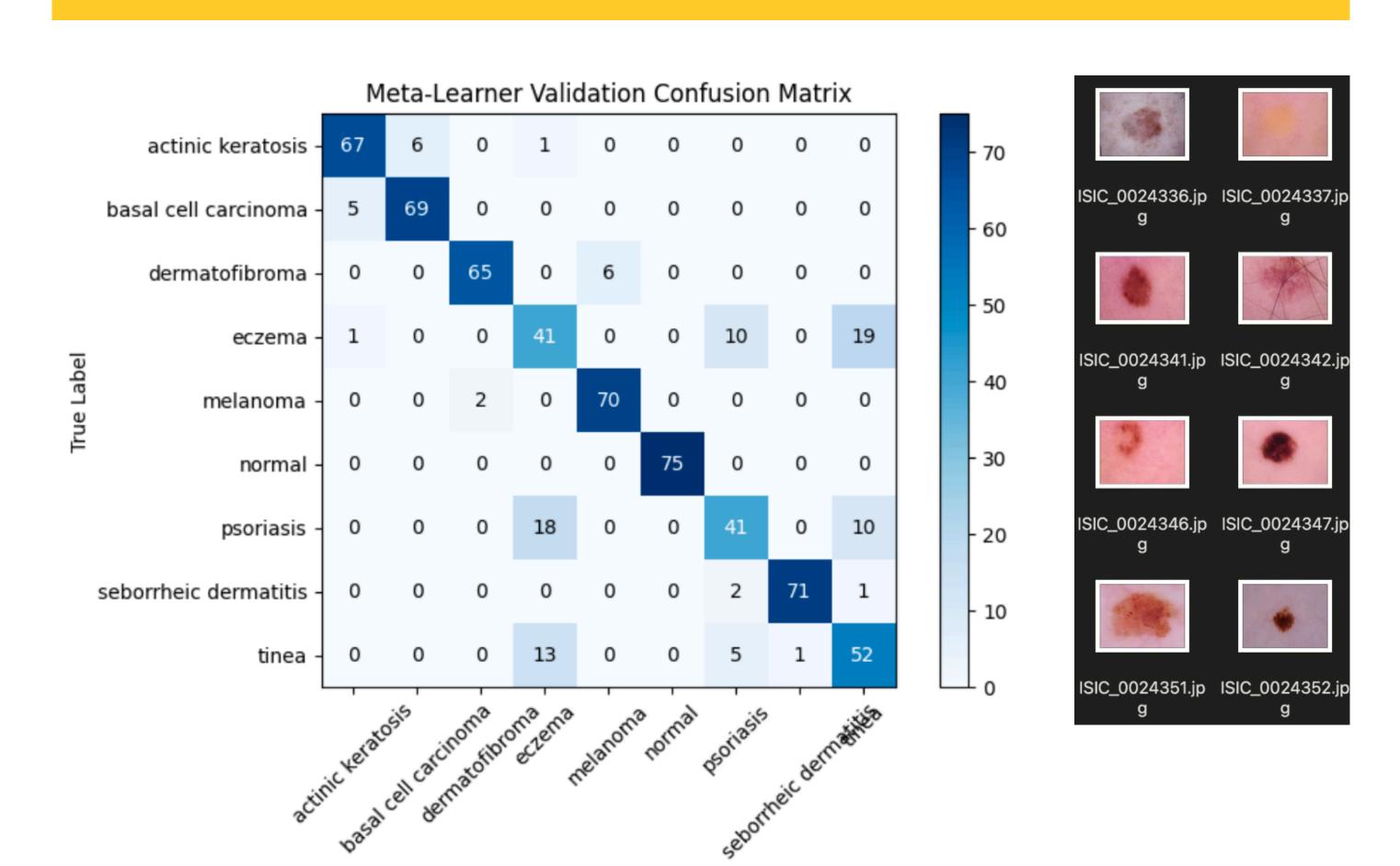


Figure: Confusion Matrix of Ensemble Model, Examples of Medical Graded Images from HAM10000

The final ensemble model, which combines predictions from both the CNN image classifier and a metadata-based model using, achieved an accuracy of 0.91—outperforming the image-only model (0.84) and metadata-only model (0.88). The confusion matrix illustrates the ensemble model's strong classification performance across nine skin conditions, with high accuracy.

Findings

- **Data cleaning was critical** preprocessing steps like rotation, cropping, and balancing of skin condition cases significantly improved model accuracy.
- Medical-grade images made a major difference boosting image model accuracy from 0.22 to 0.84.
- Selective metadata use focusing on the most impactful demographics (like symptoms, age group, and skin type) led to stronger model performance.
- Model fusion boosted accuracy combining the metadata model (0.88) with the image model (0.84) resulted in a final ensemble accuracy of 0.91.

Limitations

- Limited dataset size many skin conditions had too few labeled images to train reliable models.
- Capped condition count only 8 skin conditions (plus normal) were included due to class imbalance and data scarcity.
- Lack of real diagnostic data the reliance on prediction-labeled data (not biopsy-verified) may have impacted true diagnostic accuracy.
- Need for more real-world diversity future work should include larger, more representative datasets for improved generalization.

References

- 1. Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer, and Ponnuthurai N Suganthan. "Ensemble deep learning: A review". In: Engineering Applications of Artificial Intelligence 115 (2022), p. 105151 (cit. on pp. 8, 12, 17, 22–23, 69, 72).
- 2. Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. "The HAM10000 dataset, a large collection of multisource dermatoscopic images of common pigmented skin lesions". In: Scientific data 5.1 (2018), pp. 1–9 (cit. on pp. 2, 4, 10, 22, 26, 30–31, 35, 44, 68).